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Species distribution models (SDMs) are a common approach to describing species’ 
space-use and spatially-explicit abundance. With a myriad of model types, methods 
and parameterization options available, it is challenging to make informed decisions 
about how to build robust SDMs appropriate for a given purpose. One key compo-
nent of SDM development is the appropriate parameterization of covariates, such as 
the inclusion of covariates that reflect underlying processes (e.g. abiotic and biotic 
covariates) and covariates that act as proxies for unobserved processes (e.g. space and 
time covariates). It is unclear how different SDMs apportion variance among a suite 
of covariates, and how parameterization decisions influence model accuracy and per-
formance. To examine trade-offs in covariation parameterization in SDMs, we explore 
the attribution of spatiotemporal and environmental variation across a suite of SDMs. 
We first used simulated species distributions with known environmental preferences 
to compare three types of SDM: a machine learning model (boosted regression tree), 
a semi-parametric model (generalized additive model) and a spatiotemporal mixed-
effects model (vector autoregressive spatiotemporal model, VAST). We then applied 
the same comparative framework to a case study with three fish species (arrowtooth 
flounder, pacific cod and walleye pollock) in the eastern Bering Sea, USA. Model type 
and covariate parameterization both had significant effects on model accuracy and per-
formance. We found that including either spatiotemporal or environmental covariates 
typically reproduced patterns of species distribution and abundance across the three 
models tested, but model accuracy and performance was maximized when includ-
ing both spatiotemporal and environmental covariates in the same model framework. 
Our results reveal trade-offs in the current generation of SDM tools between accu-
rately estimating species abundance, accurately estimating spatial patterns, and accu-
rately quantifying underlying species–environment relationships. These comparisons 
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between model types and parameterization options can help 
SDM users better understand sources of model bias and  
estimate error.

Keywords: boosted regression tree, fisheries, generalized 
additive model, spatial ecology, spatiotemporal model, 
species distribution model

Introduction

Describing patterns and understanding processes are two 
goals of spatial ecology. Species distribution models (SDMs) 
can be used to describe the patterns and processes of species 
distribution and abundance, and have become essential tools 
for ecology and conservation (Guisan and Thuiller 2005, Elith 
and Leathwick 2009). SDMs use abiotic and biotic factors to 
describe where species occur across a landscape, and in what 
quantities (Elith and Leathwick 2009). As such, SDMs can 
provide important insight into critical habitat, connectivity 
within and across habitats, and the effects of anthropogenic 
forces on species (Rosenberg  et  al. 2000, Robinson  et  al. 
2017). SDMs are also increasingly being used to tackle the 
more difficult problem of forecasting how climate change 
and other factors may alter range extents, cause distributional 
shifts, or modify timing of animal migrations (Edwards and 
Richardson 2004, Hazen  et  al. 2013, Brown  et  al. 2016, 
Thorson  et  al. 2017). The wide utility of SDMs has given 
rise to a myriad of SDM types and parameterization options.

SDMs can broadly be categorized into correlative 
and mechanistic approaches (Robertson  et  al. 2003, 
Dormann et al. 2012, Connolly et al. 2017). In correlative 
models, parameter responses are not pre-defined and are 
instead modeled implicitly, resulting in responses that are not 
always ecologically reasonable. Whereas, mechanistic models 
use explicit functions to characterize relationships among dif-
ferent components of the ecosystem and are usually defined 
a priori based on ecological theory (Dormann  et  al. 2012, 
Connolly et al. 2017). Relative to mechanistic models, cor-
relative models are often conceptually simple, are capable 
of performing as well or better than simple mechanistic 
models in estimation or near-term forecasting applications 
(Robertson et al. 2003, Muhling et al. 2016), and their inde-
pendence from explicit assumptions can avoid confirmation 
biases (Connolly  et  al. 2017). However, correlative models 
can be limited in their capacity to estimate conditions when 
system states change or exhibit non-linearity, such as under 
climate-driven change (Plagányi et al. 2011, 2014, Lurgi et al. 
2012). Here we focus on correlative models, as they are pres-
ently the most common approach used in SDM applications 
(Robinson et al. 2017). Indeed, there has been an acceleration 
in the number of correlative tools available to model species 
distributions (Elith et al. 2006, Lawler et al. 2006) and there 
is need to examine the performance, precision and biases of 
correlative SDMs in a comprehensive manner.

Correlative SDMs use statistical methods to relate species 
distribution and abundance to abiotic and biotic covariates. 

Environmental covariates in correlative SDMs give insight 
into the underlying processes driving species distributions by 
indicating potential causal mechanisms. For example, tem-
perature can shape a species distribution by directly acting 
on its physiological performance (Kearney and Porter 2009), 
or indirectly by shaping predator distribution in response 
to prey resources (Harris  et  al. 2005). If key environmen-
tal processes are not accounted for in the model framework 
because they are unobserved or unmeasured (a common 
occurrence in ecological studies) then models can be poorly 
fit. Space and time covariates (e.g. latitude, longitude, day, 
month, year) can act as proxies for these unmeasured pro-
cesses, as environmental covariates are usually spatially and 
temporally autocorrelated (e.g. temperature often exhibits 
both latitudinal and seasonal gradients) (Legendre 1993). 
While space and time covariates cannot be used to attribute 
variation in distribution or density to different top–down or 
bottom–up mechanisms underlying species’ spatial patterns, 
these covariates can be powerful predictors of species occur-
rence. Space and time covariates are especially useful where 
systems are relatively homogenous and slow-changing, where 
species exhibit strong site fidelity (e.g. central place foragers), 
or when phenological patterns occur (e.g. annual migrations, 
spawning behavior) (Bascompte and Solé 1995, Koenig 
1999, Dormann 2007).

Parameterization of SDMs with environmental and spa-
tiotemporal covariates should be undertaken with explicit 
consideration of model purpose (Guillera-Arroita et al. 2015, 
García-Díaz et al. 2019). For example, if a model’s purpose 
is to accurately quantify species abundance, say for a stock 
assessment, then quantifying the environmental mechanisms 
underpinning abundance is less important than accurately 
estimating abundance. Conversely, if a model’s purpose is 
to predict or project distributions into the medium or dis-
tant future, then space and time covariates are less useful in 
obtaining robust predictions. Although it is intuitive that 
SDM parametrization should be informed by its intended 
purpose, it is unclear how different SDM types apportion 
variance among covariates. Therefore, there is a clear need 
to assess how SDM performance is influenced by covari-
ate parameterization, and how this varies by the type of  
model used.

The goal of this paper is to evaluate the performance of 
three different SDMs and their associated parametrization of 
spatiotemporal and environmental covariates. To achieve our 
goal, we use both simulated and empirical data to fit SDMs 
and evaluate model performance using a suite of seven met-
rics. Simulated data provides a landscape of species distribu-
tion with pre-specified processes shaping species distribution 
and abundance, whereas processes shaping species distribu-
tions are not known a priori for empirical data. Empirical 
data were obtained from fisheries-independent surveys and 
thus the case study incorporates additional elements of data 
uncertainty associated with sampling biases and variation in 
catchability (Kotwicki and Ono 2019). Comparative analyses 
of models built on both simulated and empirical data can help 
identify biases in model performance (e.g. whether a model 
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systematically underestimates random noise in the data) and 
challenges in model fitting (e.g. estimation of observation or 
process error).

We first simulate a species distribution with known envi-
ronmental preferences, and use this simulated data to fit and 
compare three common types of SDMs: a machine learning 
model (boosted regression tree), a semi-parametric model 
(generalized additive model) and a mixed-effects model (vec-
tor autoregressive spatiotemporal model). These three model 
types represent common correlative modeling approaches for 
SDM applications, with the latter (VAST) recently becoming 
an important SDM for fisheries scientists (Thorson 2019b). 
We then apply the comparative model framework to empiri-
cal data for three species (arrowtooth flounder Atheresthes  
stomias, pacific cod Gadus macrocephalus and walleye pol-
lock Gadus chalcogrammus) in the Eastern Bering Sea, Alaska, 
USA. These species were chosen to showcase inter-specific 
variability among results, as all species show individual and 
complex relationships with the environment and each other 
(Kotwicki and Lauth 2013, Livingston et al. 2017, Barbeaux 
and Hollowed 2018). Finally, our discussion focuses on 
the apparent trade-offs between SDM types and covari-
ate parameterization when estimating species distribution  
and abundance.

Material and methods

Simulated data

Spatially-explicit abundance of a hypothetical species was 
simulated over 20 yr in a 20 × 20° gridded area with 1 × 1° 
grid cells, and used to fit three types of species distribution 
models (SDMs). We specified that the simulated species dis-
tribution is determined by habitat suitability and is not dis-
persal limited. Data were simulated using two major steps. 
First, habitat suitability grid layers (1° resolution) were created 
for each year with four sources of variability: environmental, 
spatial, temporal and spatiotemporal (Fig. 1), where spatial, 
temporal and spatiotemporal variability represent proxies for 
unmeasured ecological processes (see Supplementary material 
Appendix 1 for more details). Environmental habitat suit-
ability included two commonly used covariates, temperature 
(°C) and topography (m). Temperature had an additional 
temporal trend (spatially constant), where temperature grad-
ually increased by 2°C over the 20-yr simulation period, with 
the species’ preference remaining constant. Spatial habitat 
suitability included two covariates, latitude and longitude. 
Spatiotemporal habitat suitability had three primary modes 
that fluctuated between high, medium and low suitability 

Figure 1. Conceptual outline of how simulated species occurrence and abundance were generated for species distribution models. Simulated 
data was generated from a lognormal distribution multiplied by a habitat suitability layer. Habitat suitability was the weighted average of 
spatial suitability (latitude and longitude, single weight), environmental suitability (temperature and topography, double weight) and spa-
tiotemporal suitability (three modes, single weight). Temperature differed each year with an overall increase of 2°C over 20 yr.
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across the 20-yr simulation (Fig. 1, Supplementary material 
Appendix 1). Habitat suitability ranged from 0 to 1, with 
highest habitat suitability being 1.

Second, these habitat grid layers were used to inform spe-
cies occurrence and abundance at each grid cell for each year. 
Habitat suitability for each grid cell was used to determine if 
a species was present (1) or absent (0) (Supplementary mate-
rial Appendix 1). If the species was absent then abundance 
was zero. If the species was present then abundance was esti-
mated from a log-normal distribution with log-mean two and 
log-standard deviation of 0.1 (Fig. 1, Supplementary material 
Appendix 1 Table A1). Abundance in each grid cell was then 
multiplied by the habitat suitability value in the same grid 
cell, to provide a habitat-informed abundance. Simulated 
data were generated for each grid cell (n = 400) once per year, 
for 20 yr, resulting in 8000 data points. The simulation used 
the ‘virtualspecies’ R package (Leroy et al. 2016) that is spe-
cifically designed to reflect real-world properties and datasets 
(Meynard et al. 2019). Detailed methods for the simulation 
are provided in the Supplementary material Appendix 1, and 
the code is available on github.

Species distribution model types

We fit three types of SDMs to the simulated species distribu-
tions: boosted regression trees (BRTs), generalized additive 
models (GAMs) and vector-autoregressive spatiotemporal 
models (VAST). We constructed all models as delta mod-
els, where both the probability of occurrence (binomial) and 
abundance (log-normal) are modeled as individual compo-
nents. Delta models are a common approach to estimating 
species distributions, particularly when data is zero-inflated 
(such as data from surveys, including the fisheries data used 
in case studies below) or when different processes are expected 
to influence occurrence and abundance (Martin et al. 2005, 
Elith et al. 2006). The three model types represent machine 
learning and statistical models, two common but conceptu-
ally different approaches to modeling species distribution 
and abundance. Machine learning methods (e.g. BRTs) are 
gaining in popularity in ecology due to their easy implemen-
tation, reliable parameter estimation and strong predictive 
performance (Elith  et  al. 2008). Machine learning uses an 
algorithm to learn the relationships between the response and 
predictor variables. This is in contrast to statistical models 
(e.g. GAMs and VAST) that first require assumptions about 
the underlying distribution of the data (e.g. Gaussian data 
distribution) before estimating parameters based on that 
data distribution. Statistical models are the most widely used 
approach in ecological modeling, with an incredibly diverse 
suite of parameterization options to meet the required statis-
tical assumptions.

The three model types differ in several key ways. First, 
the models differ in their ability to estimate nonlinear envi-
ronmental covariate responses. BRTs automatically estimate 
nonlinear responses through binary splits (regression trees). 
GAMs can flexibly estimate highly nonlinear responses using 
smoothing functions. By contrast, VAST currently estimates 

linear responses, but can be configured to produce a simple 
parabolic response by specifying a quadratic term. The VAST 
model therefore has a less flexible specification for covariate 
responses compared with either BRTs or GAMs. Second, 
standard errors for model predictions are generated differ-
ently among the three models and are not directly compara-
ble. BRTs do not conventionally produce standard errors but 
their inherent stochasticity can be leveraged to produce stan-
dard errors by fitting multiple models with random subsets of 
data and computing the error of predictions (Supplementary 
material Appendix 1); GAM standard errors are a measure 
of statistical accuracy of model estimates and are generated 
based on the Bayesian posterior covariance matrix of the 
model parameters; and VAST standard errors reflect uncer-
tainty about density predictions and are obtained using a 
generalization of the delta method (Kass and Steffey 1989, 
Thorson 2019b).

Third, the models differ in their handling of spatial and 
spatiotemporal autocorrelation that arises when a statistical 
model does not account for all processes driving species dis-
tribution and abundance. BRTs use recursive binary splits to 
relate the response variable to covariates (Elith  et  al. 2008, 
Merow et al. 2014). The spatial GAM component is config-
ured to include a gaussian process smoother on spatial coor-
dinates, where the spatiotemporal component includes this 
smoother on spatial coordinates as well as its interaction with 
year. By contrast, VAST estimates a Gaussian Markov ran-
dom field (GMRF) for spatial variation as a random effect in 
the spatial model, and a GMRF for spatial variation and its 
interaction with year in the spatiotemporal model.

Covariate configurations

Three covariate configurations were tested for each of the 
three model types (Supplementary material Appendix 1 Table 
A2). The first configuration included spatiotemporal covari-
ates only (latitude, longitude and year), the second included 
environmental covariates only (temperature, topography 
and year), and the third included both spatiotemporal and 
environmental covariates (latitude, longitude, temperature, 
topography and year). Year was included in all three model 
configurations due to the simulated data structure, where 
data was sampled once per year for 20 yr. Spatiotemporal 
processes were parameterized as the statistical interaction 
of latitude, longitude and year (Supplementary material 
Appendix 1 Table A2). Here we consider this spatiotempo-
ral process as a latent factor, where the spatiotemporal pro-
cess plays a role in species distribution and abundance but 
the process is not directly observed or included in the model  
(as is the case in many real-world scenarios). The three- 
configuration approach allowed the contribution of spa-
tiotemporal and environmental covariates to be quantified 
for each model type (n = 3), as well as to quantify how well 
models perform when processes are missing in the SDM 
framework but are replaced by correlated covariates. Model 
parameterization for each model type is outlined in detail in 
the Supplementary material Appendix 1, and where possible 
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we implemented default or commonly used model settings 
for simplicity (Supplementary material Appendix 1 Table A2).

Model estimates of species abundance were compared 
to the simulated data, which represents the truth, for each 
location and each year using two metrics: root mean square 
error (RMSE) and Spearman correlation coefficient. Model 
fit was then assessed using two metrics: Akaike’s informa-
tion criterion (AIC), and percent deviance explained. There 
is no widely accepted approach to calculate AIC for BRTs, 
and instead we tested how many covariates (if any) could 
be removed to simplify the model using the ‘gbm.simplify’ 
function in R (Elith et al. 2008). Models were also assessed 
and compared by visually examining model response curves 
to environmental covariates, spatially-explicit predictions of 
abundance including calculations of center of gravity and 
inertia (Woillez et al. 2009), and time-series of species total 
abundance. Finally, the generation and modeling of simu-
lated data was replicated ten times. Within each replicate, 
the root mean square error (RMSE) of model predictions for 
each location and year relative to the simulated data was cal-
culated for each model. We tested the influence of model type 
and covariate configuration on model performance (RMSE) 
using a two-factor ANOVA and a Tukey honestly significant 
difference (HSD) post-hoc test (Brodie et al. 2018a) in the R 
‘stats’ package (R Core Team).

Case study

The SDM framework that was outlined above was applied to 
three species in the Eastern Bering Sea: arrowtooth flounder 
Atheresthes stomas, pacific cod Gadus macrocephalus, and wall-
eye pollock Gadus chalcogrammus. These species were chosen 
to highlight inter-specific variability and add real ecological 
complexity to the model comparison, such as species-specific 
ecological processes not captured by model covariates. Species 
catch data and contemporaneous in situ environmental data 
were obtained from the National Oceanic and Atmospheric 
Administration’s Alaska Fisheries Science Centre fishery-
independent bottom trawl survey, which used a systematic 
survey design and standardized fishing procedures to sample 
~376 stations each year from 1982 to 2017 (see Stauffer 2004, 
for details about the survey protocol). The survey catch per 
unit effort (CPUE) is estimated using the area-swept method 
(Alverson and Pereyra 1969), which multiplies the distance 
fished by the average distance between wing tips measured 
using acoustic spread sensors (see Weinberg and Kotwicki 
2008, for details). We used the CPUE of each species as a 
response variable in modeling, where CPUE is the number 
of individuals 0.01 km–2 trawl. CPUE data were truncated to 
only include adult fish (pollock > 40 cm, arrowtooth floun-
der > 30 cm, pacific cod > 70 cm). Environmental covariates 
included bottom temperature (°C) and bottom depth (m), 
where temperature was recorded at the depth of the trawl gear 
and bottom depth was recorded by the vessel. Model param-
eterization was the same as the simulation (Supplementary 
material Appendix 1), except VAST was implemented across 
100 locations (instead of 400 used above) that were selected 

by applying a k-means clustering algorithm to the CPUE 
data to identify geographic locations that reflect survey sam-
pling intensity (Johnson et al. 2019). Model fit was assessed 
using Akaike’s information criterion and percent deviance 
explained. Model outputs were visualized using a time-series 
of species total abundance.

Data deposition

We used bottom trawl data collected by the Eastern Bering 
Sea bottom trawl survey, publicly available at: < www.afsc.
noaa.gov/RACE/groundfish/survey_data/data.htm >. Code 
for the simulated data available at: GitHub, <https://github.
com/stephbrodie1/Simulation_SDM_TradeOffs>.

Results

Species distribution models using simulated data

Simulated spatially-explicit species abundance data were 
successfully modeled using three model types (BRT, GAM, 
VAST) across three model configurations (spatiotemporal, 
environmental, spatiotemporal and environmental configu-
rations). The ability of the SDMs to replicate the known 
environmental preferences of the simulated species was best 
in the BRT and GAM models. GAMs and BRTs very closely 
replicated the preference curves for temperature (Fig. 2) and 
topography (Supplementary material Appendix 1 Fig. A2), 
with both covariates significant in the GAM (p < 0.001; 
Supplementary material Appendix 1 Table A3) and impor-
tant in the BRT (no covariates dropped during model sim-
plification; Table 1). The VAST delta model was only able to 
replicate preference curves in either the occurrence or abun-
dance component of the delta model. The VAST occurrence 
component could produce the correct U-shaped temperature 
preference but the mean was slightly right skewed (Fig. 2). The 
VAST abundance component estimated the near-linear topo-
graphic preference well (Supplementary material Appendix 1 
Fig. A2). Spatiotemporal covariates (latitude, longitude and 
year) were all significant in the GAM and VAST delta mod-
els (p < 0.05; Supplementary material Appendix 1 Table A3), 
and had greater than 8% relative influence in the BRT delta 
model (Supplementary material Appendix 1 Table A3).

Spatially-explicit predictions of species abundance revealed 
that all three model types could broadly replicate the spatial 
structure of the simulated data (Fig. 3). Overall, BRT and 
GAM predictions slightly over-predicted spatially-explicit 
species abundance, and VAST slightly under-predicted spa-
tially-explicit species abundance (Fig. 3). Differences between 
the three model configurations were most obvious in the 
BRT and GAM delta models, where models with only spatio-
temporal covariates generally over-smoothed model predic-
tions (Fig. 3). VAST predictions showed no major differences 
between configuration one (spatiotemporal covariates) and 
configuration three (spatiotemporal and environmental 
covariates), but configuration two (environmental covariates) 
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Figure 2. Temperature preference curves for simulated data (top, replicate one) and the three model types (boosted regression tree BRT, 
generalized additive model GAM and vector autoregressive spatiotemporal model VAST) using configuration three (spatiotemporal and 
environmental covariates). Models are delta models with occurrence and abundance components presented.



17

was not able to reproduce any spatial structure in the simu-
lated data (Fig. 3). Center of gravity and inertia of simulated 
data were most similar to model predictions that included 
both spatiotemporal and environmental covariates (Fig. 3).

Total predicted species abundance aggregated by year over 
the 20-yr time-series indicated major differences between the 
SDMs. VAST predictions were most precise, and this pattern 
held for all three model configurations (Fig. 4). However, 
VAST had the highest standard errors associated with predic-
tions (Fig. 4). BRT predictions were less precise, with delta 
models over-predicting abundance in some years but errors 
in predictions were small (Fig. 4). GAM predictions were the 

least precise relative to other models, with predictions over- 
or under-estimating abundance depending on the model 
configuration (Fig. 4). Standard errors for GAM predictions 
were often small but overlapped the observed data in some 
years (Fig. 4). Standard errors of predications are not directly 
comparable between model types as they are estimated in dif-
ferent ways (see Methods section).

We found that model performance was variable 
among model types and among covariate configura-
tions (Supplementary material Appendix 1 Fig. A1). The 
two-way ANOVA indicated that model performance 
(RMSE) was significantly affected by both model type  

Table 1. Summary statistics for three model-types for simulated (replicate 1) and case study data. Model configurations include spatiotem-
poral covariates, environmental covariates and the combination of both spatiotemporal and environmental covariates. Root mean square 
error (RMSE) and spearman correlation coefficient values are shown for the simulated data. Percent explained deviance and Δ Akaike infor-
mation criteria (AIC) values for each occurrence (abundance) model are shown for simulated and empirical data. AIC values are not gener-
ated for each component of the delta model in VAST, instead one value is given. AIC can’t be generated for BRTs, and instead we tested how 
many covariates need to be removed to fit an optimal model (0 indicates no covariates).

Data source Metric and model Spatiotemporal Environmental Spatiotemporal and environmental

Simulated data RMSE
   BRT 1.69 1.26 1.16

  GAM 1.75 1.85 1.23
   VAST 1.35 1.47 1.35
 Correlation 
   BRT 0.79 0.92 0.95

  GAM 0.77 0.77 0.93
   VAST 0.89 0.34 0.89

Deviance explained  
  BRT 47 (50) 67 (93) 68 (93)
  GAM 43 (41) 36 (50) 62 (86)
  VAST
ΔAIC
  BRT 0 (0) 1 (0) 0 (0)
  GAM 1836 (7634) 2479 (6733) 0 (0)
  VAST 9 8168 0

Arrowtooth flounder Deviance explained    
   BRT 82 (81) 74 (64) 81 (81)

  GAM 69 (50) 69 (52) 75 (62)
  VAST NA NA NA
ΔAIC    
  BRT 0 (0) 0 (0) 0 (0)
  GAM 993 (1466) 876 (1249) 0 (0)
  VAST 561 1779 0

Pacific cod Deviance explained    
  BRT 23 (39) 21 (32) 26 (44)
  GAM 14 (23) 12 (17) 18 (26)

   VAST NA NA NA
 ΔAIC    
   BRT 0 (0) 0 (0) 0 (0)

  GAM 632 (195) 878 (750) 0 (0)
   VAST 191 1953 0
Walleye pollock Deviance explained    
   BRT 62 (70) 44 (55) 60 (75)

  GAM 30 (42) 32 (38) 41 (48)
   VAST NA NA NA
 ΔAIC    
   BRT 0 (0) 0 (0) 0 (0)

  GAM 902 (1246) 720 (1904) 0 (0)
   VAST 320 4776 0
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Figure 3. Spatially-explicit species abundance for year one of the simulated data (row 1, replicate one) and delta model predictions with 
spatiotemporal (row 2), environment (row 3) and both spatiotemporal and environmental covariate configurations (row 4) for each inves-
tigated model type. White crosses indicate the true center of gravity and inertia of the simulated data, and grey crosses indicate the predicted 
center of gravity and inertia from each model.
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(F(2,85) = 7, p < 0.01) and covariate configuration (F(2,85) = 28, 
p < 0.001) (Supplementary material Appendix 1 Fig. A1). 
Post-hoc analyses on the main effect of model type revealed 
that BRT models were significantly different to GAM 

(p < 0.01) and VAST (p < 0.01) models. Post-hoc analyses 
on the main effect of covariate configuration revealed sig-
nificant differences between all configurations (p < 0.01). 
Regardless of model type, including both environmental 

Figure 4. Time-series of simulated (replicate one) and predicted abundance for boosted regression tree (BRT, top), generalized additive 
model (GAM, middle) and vector autoregressive spatiotemporal model (VAST, bottom) models. Simulated data (purple) and time-series 
for models with spatiotemporal (blue), environmental (green) and both spatiotemporal and environmental covariate (yellow) are shown. 
VAST predictions between model configurations are similar, and thus, not all colors are visible. Standard errors are shown for GAM and 
VAST models, with BRT error determined as the standard deviation of predictions from ten BRTs.
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and spatiotemporal covariates had better explanatory power 
(explained deviance) and fit (AIC) compared to models that 
only included either spatiotemporal or environmental covari-
ates (Table 1).

Case study

The distribution and abundance of three species (arrowtooth 
flounder, pacific cod, walleye pollock) in the Eastern Bering 
Sea were successfully modeled using all three model types 
(BRT, GAM, VAST), and the three covariate configurations 
(spatiotemporal only, environmental only and both spatio-
temporal and environmental). A total of 12 866 trawls were 
included in the analysis for each species, but the percentage of 
trawls with each species present varied from 43% for arrow-
tooth flounder, 57% for pacific cod and 90% for walleye pol-
lock (Supplementary material Appendix 1 Table A4). For all 
three species and three model types, including both spatio-
temporal and environmental covariates resulted in the best 
model fit and highest explanatory power (Table 1, Fig. 5). 
This result was consistent with that seen for the simulated 

data (Table 1). Time-series of species abundance showed 
BRTs and GAMs predicted lower abundance across all three 
species compared to VAST estimates and the observed data 
(Fig. 5). Model estimates for each covariate configuration 
were typically similar within a model type, except for the 
arrowtooth flounder GAM, and the VAST models for arrow-
tooth flounder and walleye pollock (Fig. 5). The similarities 
between covariate configurations within a model type were 
consistent with the simulation results.

Discussion

Species are not homogeneously distributed across space 
and time, and species distribution models (SDM) can be 
used to better understand the patterns of and processes 
driving species distributions (Elith and Leathwick 2009, 
Robinson  et  al. 2017). Here, we tested a suite of three 
SDM types (BRTs, GAMs and VAST) and three covariate 
parameterization options (spatiotemporal covariates only, 
environmental covariates only and both spatiotemporal and 

Figure 5. Time-series of predicted abundance of three species in the Eastern Bering Sea arrowtooth flounder (left), pacific cod (middle) and 
walleye pollock (right). Estimates for boosted regression trees (BRT, top), generalized additive models (GAM, middle), and vector autore-
gressive spatiotemporal model (VAST, bottom) are shown. Purple is the observed survey data, blue is configuration one (spatiotemporal 
covariates), green is configuration two (environmental covariates) and yellow is configuration three (spatiotemporal and environmental 
covariates). Standard errors are shown for GAM and VAST models, with BRT error determined as the standard deviation of predictions 
from ten BRTs.
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environmental covariates), to better understand the influ-
ence of model type and covariates on accurately estimating 
species distribution and abundance. Using simulated and 
empirical data, we found that model type and covariate 
parameterization had a large influence on estimates of spe-
cies distribution and abundance. We found that by includ-
ing either spatiotemporal or environmental covariates we 
were typically able to reproduce patterns of species distribu-
tion and abundance across the three types of models tested. 
While including both spatiotemporal and environmen-
tal covariates improved model fit and explanatory power 
across the simulated and empirical SDMs tested, there are 
trade-offs when including both spatiotemporal and envi-
ronmental covariates which we discuss below. Our results 
reiterate the importance of identifying model purpose as a 
first step in the modeling process. Identifying model pur-
pose can then inform subsequent decisions on which type 
of model to choose based on the biases associated with each 
model type, and which configuration of spatiotemporal and  
environmental covariates to include.

Our simulation indicated that all SDM types could closely 
replicate the distribution and abundance of a simulated spe-
cies, however each model revealed varying performance and 
utility. When including both spatiotemporal and environ-
mental covariates, estimates of simulated spatial distribution 
were accurate across all three models, but GAMs and BRTs 
had a smaller error rate than VAST. However, total yearly 
abundance was most accurately estimated in VAST, followed 
by BRTs, with GAMs performing worst. Finally, replicat-
ing nonlinear environmental preferences was best achieved 
by GAMs and BRTs, with VAST typically not capable of 
replicating nonlinear preferences. These results from the 
simulation have broader implications depending on model 
purpose. First, if model purpose is to best explain the envi-
ronmental processes underlying species distributions, then 
BRTs and GAMs would be a best choice. In such cases, an 
SDM might be used to predict species distributions in new 
places or times where only environmental information is 
available (Hazen et al. 2013, Sequeira et al. 2018, Yates et al. 
2018). These kinds of insights are especially important for 
spatial management and conservation decisions (e.g. related 
to reducing cross-sector conflicts or placement of protected 
areas). Second, model purpose may be to obtain robust 
abundance indices with associated standard errors, in which 
case VAST would be the best choice. In such cases, the most 
accurate abundance indices could be included in stock assess-
ments that affect broad-scale decisions on fisheries harvest 
allowances (Cao et al. 2017, Xu et al. 2019). However, we 
do note that GAMs and BRTs can still be suitable for deriv-
ing abundance indices, with ongoing research indicating that 
GAMs and machine-learning approaches can have precise 
predictions with some bias (Stock  et  al. 2018). Third, user 
complexity may also affect model purpose. For example, 
BRTs have the simplest implementation and require mini-
mal statistical assumptions, which are appealing traits when 
scientific capacity is limited, timelines to decisions are short 
or both (Tallis  et  al. 2010). However, such simplicity does 

not detract from critical steps of model validation and evalu-
ation in the SDM process (Robinson et al. 2017). Ultimately 
model purpose must be given due consideration when decid-
ing on SDM type (Guillera-Arroita et al. 2015).

The spatiotemporal and environmental covariate configu-
rations explored in our simulation and case studies touched 
on a common problem when building SDMs. Including 
either spatiotemporal or environmental covariates alone can 
produce good models, but often SDMs are best when both 
spatiotemporal and environmental covariates are included 
(Brodie et al. 2018b, Johnson et al. 2019). The simulation 
and case study shown here support the inclusion of both spa-
tiotemporal and environmental covariates where possible, 
however this does come with trade-offs using the current 
generation of SDMs. SDMs used to transfer to another area 
or another time (i.e. climate projection) may be hindered 
when spatial and temporal covariates are included. This is a 
common issue in SDMs where including latitude can greatly 
improve model explanatory power but limits model transfer-
ability to new areas (Becker et al. 2018). A similar problem 
can occur temporally, when including year as a covariate 
can limit the capacity of that model to be used in long-term 
forecasts, such as climate projections. However, the abil-
ity of models to transfer beyond the study domain varies 
between model types as well as model parametrization. For 
example, gaussian process smoothers will not extrapolate to 
areas without available data but rather become zero; whereas 
for other models types extrapolation may need to be explic-
itly tested and controlled for (Conn et al. 2015, Grüss et al. 
2018). Parameterizing models is best done using covariates 
that have well-established mechanistic underpinnings, espe-
cially for models that will be used to transfer to a new area 
(Yates et al. 2018). However, this will not resolve all issues 
of unrealistic prediction when extrapolating to unknown 
conditions and future work could consider the extrapolation 
methodologies of model types. Additionally, spatiotempo-
rally autoregressive terms within correlative SDMs can pro-
vide skill in short-term forecasting (Correia 2018, Thorson 
2019c), where forecast skill can come from the persistence 
of biological and ecological phenomena as well as localized 
density dependence (Anderson and Beer 2009, Jacox et al. 
2017, Mills et al. 2017). As such, model purpose also plays 
a role in how correlative SDMs should be parameterized.

Identifying model purpose as a first step requires the stake-
holders, goals and scope of analysis to be defined prior to 
model development (Tallis et al. 2010). Deciding on a sin-
gle model type that is fit for purpose is difficult (Guillera-
Arroita  et  al. 2015), but there are multiple options. These 
could include building multiple model types and using retro-
spective model validation and assessment to guide decisions 
on which model performed best. This requires additional 
work as many of the models may not ultimately be used 
but does allow for inter-model uncertainty to be assessed. 
Alternatively, model ensembles have also been suggested as 
an effective approach to overcome biases inherent within any 
one model (Araújo and New 2007, Anderson  et  al. 2017, 
Dormann et al. 2018, Abrahms et al. 2019).
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Species occurrence and abundance data are common cur-
rency for ecologists, but there is large variability among data 
sources depending on data quality (e.g. opportunistic sam-
pling versus designed surveys), data structure (e.g. daily ver-
sus annual or irregular sampling) and data quantity. While 
not investigated in this paper, such data issues could influence 
the results shown here. The case study species that we inves-
tigated showed similar results across covariate configurations 
which is likely due to the fact that they were sampled from 
the same trawl survey, had a high probability of occurrence 
in each trawl sample (Supplementary material Appendix 1 
Table A4), and also share similar life-history traits (Kotwicki 
and Lauth 2013, Barbeaux and Hollowed 2018). However, 
the pacific cod models did generally perform worse than the 
other species, highlighting how variability in species life his-
tory may affect model performance across model type. Fitting 
multiple types of data from different sampling programs (e.g. 
presence–absence, counts and biomass data) is one way to 
improve model performance relative to a model that fits only 
one data source in isolation (Brodie et al. 2018b, Grüss and 
Thorson 2019). Another option to improve model perfor-
mance for the case study species would be to add in addi-
tional environmental covariates that are known to influence 
these species distributions (e.g. sediment grain size, cold pool 
extent, ocean colour, currents, etc.; Parker-Stetter et al. 2016, 
Laman et al. 2017, Thorson 2019a). This was not done here 
as our purpose was to provide case study models that were 
complementary to the simulation, rather than to build the 
‘best’ predictive model for an individual species. In general, 
the total number of covariates included in a model influences 
whether models are under-fit or over-fit (Merow et al. 2014). 
The total number of covariates included in a model should 
depend on the model purpose as well as the understanding 
of how covariates influence the biological process being mod-
elled (Merow et al. 2014, Fourcade et al. 2018).

Accurately describing and understanding variation in spe-
cies distribution and abundance is a key requirement for man-
agers and policy makers, often forming the baseline of many 
strategic plans that seek to conserve resources and improve 
resilience to future change (NOAA Strategic Plan: NMFS 
2016, e.g. Magnuson–Stevens Act: Rosenberg  et  al. 2000). 
As such, SDMs form an important part of environmental 
management and conservation (Robinson et  al. 2017). For 
example, the US National Marine Fisheries Service National 
Climate Science Strategy explicitly calls for increased focus 
on understanding relationships between environmental vari-
ables and species distributions. This understanding is key to 
fulfilling mandates for both fisheries sustainability and effec-
tive conservation of protected species. With protected spe-
cies, for example, changes in the regional abundance of a 
species can influence estimates of potential biological removal 
within U.S. versus international waters. In fisheries manage-
ment, accurate estimates of transboundary stock status and 
productivity interplay within complex social and economic 
considerations to determine national allocations (Brodziak 
and Link 2002, Fulton et al. 2011, Bailey et al. 2013). On 
the US West Coast, specifically, the fisheries management 

body (PFMC) is currently moving forward with a ‘climate 
and communities initiative’ that intends to develop scenarios 
around shifting distributions of fish stocks and their poten-
tial impacts on coastal communities. In another example, 
the European Union has implemented the Marine Strategy 
Framework Directive to protect the marine environment and 
biodiversity by applying an ecosystem approach to manage-
ment (Brennan et al. 2014). For the above and related efforts, 
SDMs will form the foundational infrastructure for fulfill-
ing scientific mandates. Our results indicate a trade-off in the 
current generation of SDM tools between accurately estimat-
ing species abundance, accurately estimating spatial patterns 
and accurately quantifying underlying species–environment 
relationships. While we found there is no single best model 
to achieve all these goals, we were able to highlight examples 
of correlative SDMs that performed well. Additionally, the 
comparison of model types shown here is of use to resource 
managers to better understand biases and sources of uncer-
tainty between commonly used models. VAST in particular 
can very accurately estimate species abundance and associated 
error (Thorson 2019b), but is a relatively new tool and key 
differences between VAST and other commonly used tools, 
like GAMs and BRTs, have not previously been showcased. 
We recommend further comparisons of VAST and other 
common tools, as different design constraints will likely affect 
the relative ranking of VAST and other models (Grüss et al. 
2019).

Species distribution models can be used effectively to 
understand the patterns and processes driving species’ space 
use and offer robust methods with which to quantify ecosys-
tem components. We investigated covariate parameterization 
options of correlative SDMs and found these models were 
capable of accurately representing species distribution and 
abundances. We identified model purpose as an important 
step in the SDM process, with decisions on model type and 
model parameterization shown to have significant effects on 
model accuracy. The methodological comparison done here 
can help SDM users better understand sources of model bias 
and estimate error.
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